On May 25, 2004, the Nuclear Regulatory Commission was informed of the occupational overexposure to a nuclear pharmacist trainee in the State of South Carolina. The licensee’s consultant determined that the nuclear pharmacist trainee received a shallow dose equivalent of 7,400 mGy, a deep dose equivalent of 70 mSv and a thyroid dose of 0.9 mSv. The overexposure occurred on March 17, 2004, when the nuclear pharmacist trainee spilled a vial containing liquid iodine-131 while preparing a radiopharmaceutical.
The Nuclear Regulatory Commission’s annual limits are as follows: 500 mSv for shallow dose equivalent; and 50 mSv for the sum of the deep dose equivalent and the thyroid dose, which is multiplied by its weighting factor.
Everywhere you look, the nuclear industry’s hype machine is in overdrive. Goldman Sachs, Microsoft, and the UK government all tout small modular reactors as the silver bullet for climate change and energy security. Tech billionaires are hiring nuclear veterans. Wall Street is whispering about “round-the-clock power” for artificial intelligence data centers. For those old enough […]
Kernenergie en veiligheid: A wargame sought to test if a major radiological release that would prompt the evacuation of millions of civilians in South Korea could distract key US allies from assisting and rebuffing an all-out military invasion of Taiwan. The short answer was yes. The game originally presumed that China, wanting to keep the […]
Big batteries and EVs to the rescue again as faults with new nuclear plant cause chaos on Nordic grids The Finnish nuclear power plant Olkiluoto was finally connected to the grid last year, at an estimated cost of €11 billion compared to the original budget of €3 billion. That cost blowout forced its developer, the […]
A vast subsea nuclear graveyard planned to hold Britain’s burgeoning piles of radioactive waste is set to become the biggest, longest-lasting and most expensive infrastructure project ever undertaken in the UK. The project [UK's nuclear waste dump] is now predicted to take more than 150yrs to complete with lifetime costs of £66bn in today’s money...The […]
Last year, the Dutch Province of Limburg started an alliance in which, besides the local government, research institutes, small nuclear reactor (SMR) developers, utilities, industrial customers and funders cooperated. With this "Limburg SMR alliance" Limburg tried to lead the way towards an SMR in Limburg. The preferred site for a first SMR would be Chemelot, […]