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After the events of 11th September, it is perhaps just a 
short and logical step for terrorists to latch onto how highly 
hazardous plants might be triggered into releasing energy 
and toxins via an aerial attack or other mode of attack.  
If and when so, could it be that such plants cannot provide 
a robust defence against aerial attack and are there 
particularly vulnerable parts of the buildings and processes 
that, if penetrated, could lead to a devastating release of 
energy and toxins? 

Nuclear plants are such highly hazardous plants.  These 
plants undertake a variety of processes, some of which 
involve intensely radioactive materials and highly reactive 
chemicals. Moreover, being nuclear there is a public 
perception of dread and fear (ie a fate worse than death) 
associated with radioactive release which might, it could be 
argued, render plants such as BNFL Sellafield and 
COGEMA Cap La Hague attractive targets to 
terrorists.  However, to mount an attack on a nuclear 
plant the terrorist cell would have to plan ahead, locate the 
particularly hazardous plants and stores, determine the 
amount and nature of the radioactive contents and how 
readily this might be dispersed into the atmosphere, and 
identify the most vulnerable aspects of the buildings and 
containments of the targeted plants. 

This paper examines how and by which means those 
planning such a hypothetical act of terrorism might obtain 
this sort information and, from this, how potential target 
systems and processes within a nuclear plant are identified.  
The work has intentionally confined itself to information 
and documentation available in the public domain, 
although it is assumed that those involved would either 
possess or successfully seek some relatively elementary 
knowledge of building construction, radioactive materials 
and substances, reactor fuel, its radioactivity and 
chemistry. 

The outcome is disturbing.  First, the requirement that 
aircraft crash, irrespective of the forecast accident 
frequency, be accounted for in the regulatory safety case 
was not introduced for nuclear reactors until 1979/80 in 
the UK and France respectively and for chemical 
separation and nuclear fuel plants such as those at 

Sellafield and Cogema 198/92 in the UK and France 
respectively. Examples of where the nuclear industry have 
taken this into account, such as for the Sizewell B PWR 
in the UK, are almost dismissive of the risk solely on the 
basis that the calculated frequency renders such an 
accidental event to be entirely incredible and, hence, there 
may have been little incentive to include for such a remote 
event in the design. Second, nuclear plants are almost 
totally ill-prepared for a terrorist attack from the air – the 
design and construction of the buildings date from a period 
of over 50 years, many of the older buildings would just 
not withstand an aircraft crash and subsequent aviation 
fuel fire, and some of the buildings, now redundant for the 
original purpose, have been crudely adapted for storage of 
large quantities of radioactive materials for which they are 
clearly unsuited.  Third, the design of the most modern 
plants does not seem to provide that much defence (in 
terms of containment surety and segregation of hazardous 
materials) against an aerial attack. 

Overall, the nuclear industry defends its plants against 
natural and accidentally occurring hazards on a basis of 
‘as chance would have it’, and it provides protection 
against human error by designing the systems and 
equipment to be tolerant and/or independent of human 
action (or inaction).  This combined approach of gauging 
the risk by probabilistic assessment and treating the 
human operators as inconsequential dummies may have 
some effect in safeguarding the plant against accidents and 
unintentional human error, but it may prove to be 
woefully ineffective against intentional and intelligently 
driven acts of terrorism. 

Finally, it should be noted that this paper has 
concentrated on terrorist attack by aircraft crash, a mode 
of sabotage that was inconceivable just a year or so in the 
past.  From the events of 11 September 2001 we now 
know that deliberate aircraft crash has to be defended 
against but what of the next attack, what shape and form 
will that take and how will plants like Sellafield and La 
Hague be defended against it? 

Keywords:  terrorism, sabotage, nuclear plants 
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Introduction   
 
As an example of the modus operandi of a terrorist attack, the mode of attack by the terrorists is 
assumed to be that of the airliners hijacked by the al-Qaida on 11th September in the United States. 
However, a malicious attack on a nuclear plant could arise from armed insurgents, from an external 
explosive device such as a truck or four-wheel drive vehicle bomb, or via a passive or more directly by an 
active insider employed within the plant itself. Moreover, other novel attack modes cannot be excluded 
with, for example, the ramming of a large gas tanker ship loaded with liquefied petroleum gas (LPG)1 into 
a nuclear facility located on the coast, such as the Japanese nuclear power plants and numerous reactors 
in other countries, including France and the UK.   

That said, the way in which the nuclear industry of the West responds to the possibility of and caters for 
aircraft crash (accidental or deliberate) provides a valuable insight into the vulnerabilities  of nuclear 
plants.  

Chance of Aircraft Impact 

In the United Kingdom:   The Nuclear Installations Inspectorate (NII) regulates the nuclear safety via 
the regulatory framework of the Nuclear Installations Act 1965 that is set out in principle by two guidelines 
the Safety Assessment Principles (SAPs)2 and the Tolerability of Risk.3  Principles 126 and 127 of the licensing 
body’s (NII) SAPs refer to aircraft impact in the following way: 

“ .  .  . 

1) (P126)  The predicted frequency of [accidental] aircraft and helicopter crash on or near safety-related 
plant at the nuclear site should be determined.  The risk associated with the impacts, including the 
possibility of aircraft fuel ignition, should be determined to establish whether Principle P119 is satisfied. 

2) (P127) The calculation of crash frequency should include the most recent crash statistics, flight paths and 
flight movements for all types of aircraft and take into account forecast changes in these factors if they affect 
the risk.  Relevant bodies should be consulted by the licensee with the object of minimising the risk from 
aircraft approaching or over -flying the plant. 

        .  .  .”    

  
Principle 119 relates to the anticipated frequency of the hazard, in this case an aircraft crash:- 

 “ .  .  . 

 (P119)  It should be shown for all hazards that the design basis analysis principles and the PSA 
principles are satisfied as appropriate, unless it can be demonstrated that the frequency of an event being 
exceeded is less than once in 10 million years, or if the source of the hazard is sufficiently distant that it 
cannot be expected to affect the plant. 

              .  .  .”  

Thus in the United Kingdom, the nuclear safety case is required to include all types of aircraft crashing 
into the nuclear plant.  The design is set not by the potential severity of the damage but by the probability 
of the crash occurring. 
 
In France: Setting the design of nuclear installations in the face of the risk of an aeroplane crash is 
based on two fundamental safety rules (RFS – règles fondamentales de sûreté), issued by the safety authority, 
applicable to "taking account of risks related to aircraft crashes", these are: 
 
o Rule N° I.2.a of 5 August 1980, applicable to "nuclear  units with a pressurised water reactor"; 
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o Rule N° I.1.a of 7 October 1992, applicable to "basic nuclear installations other than reactors, 
with the exception of installations intended for long-term storage of radioactive waste." 

 
Prior to the enactment of  these RFSs, no regulatory specification existed for taking account of this 
particular risk in the design nuclear installations, thus excluding de facto all nuclear power plants 
commissioned prior to 1982 and fuel and other nuclear facilities (including the installations of La 
Hague), designed before the RFS came into force in 1992. 
 
The risk of a crash of a commercial civil or military aircraft are deemed to be below the probable risk 
threshold and thus such high energy impacts are ruled out by this definition alone.  In fact  a "plausible 
aircraft crash" (the only subject of these rules) is defined as the crashing of a general aviation type aircraft 
(weighing less than 5.7 tonnes), with the RFS going further to define two types of aircraft "deemed 
representative": the CESSNA 210, single-engine craft of 1.5 t (propeller) and the twin-engine 
LEAR JET 23, 5.7 tonnes, both assumed to impact the installations at a speed of 100 m/s. This is far 
from the energy of impact resulting from a 400 t Boeing-747 with its speed of 250 m/s, with the 
additional hazard of the 100 tonnes or more of highly flammable aviation fuel.4 

 
Thus in France it is the type (all up weight) of aircraft that determine the design and capacity of the plant 
to resist aircraft crash.5 
 
Other States:  In a recent study,6 the NRC assessed the penetration probabilities in dependence of the 
distance from airports for relatively small planes hitting various thicknesses of concrete. It clearly 
demonstrates that even planes of limited size would have a good chance of penetrating significant layers 
of concrete. 

An analysis of the plane crash risk for nuclear power reactors in Germany,7 states: 
 

• After 1973 (about half of the German reactors): Design Basis Accident: military 
fighter plane (774 km/h); 

• Accidental crash of a medium sized and speed (350-400 km/h) of commercial plane 
considered covered; 

• No analysis available on larger planes that crash intentionally (100 t of jet aviation fuel 
compared to 5 t fuel for military aircraft);  

 
With the German Commission concluding: 

“. . . 

 Therefore the Commission concludes that it remains open whether through the effects of fire and debris a 
simultaneous failure of safety features can take place that can lead to the failure of residual heat removal 
and massive releases of radioactive substances cannot be excluded. 

. . .” 

 
 
Determining the Probability of Accidental Impact 

In assessing accidental aircraft crash probability the guidelines and principles set out by the US 
Department of Energy,8 are generally adopted.  Essentially, this approach assumes some form of loss of 
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control of the subject aircraft, its subsequent deviation from the intended flight path and the chance of it 
crashing into the target nuclear plant.  The nuclear plant is defined as a crash area and the parameters 
relating to this are calculated from the effective fly-in, footprint , shadow and skid areas that are determined from 
established codes.9  Applied to a civil airliner operating at altitude and passing along a prescribed flight 
path, this a posteriori probabilistic approach adopts rates drawn from actual crash incidents, yields a very 
low accidental crash probability.10,11,12 Essentially, the whole probabilistic assessment outcome is 
determined by the chance of a very small missile, the aircraft, accidentally hitting a small target, the 
nuclear plant, located in a very large geographical space.  Applying this to British nuclear plants suggests 
that accidental aircraft crash rates are sufficiently low (<107 per year) to satisfy the requirements of 
Principle 119, that is the hazard occurrence is so remote that it cannot be expected to affect the plant.13 

Acceptability of Light Aircraft Impact as a Design Basis 

Since 11th September Europe’s nuclear industries have been unusually tacit about the ability of their 
plants to withstand terrorist attack.  However, a  recent example of the position of the world’s nuclear 
safety regulators is given by the Director General, Jukka Laaksonen, of the Finnish Radiation and 
Nuclear Safety Authority (STUK),14 who accepts that the lightest level of defence against aircraft crash 
continues to be acceptable for Finland’s two existing, twin reactor nuclear power stations and its 
proposed fifth power reactor:  

“.  .  .   
  [The] World’s nuclear plants are designed on three levels against airplanes.  First, against kinds of light 

airplanes, then against starfighter-type airplanes and then against large commercial airplanes.  This design 
depends primarily on how close to flight -routes these plants are sited and our plants are far from flight routes 
and we have no fly zones to all planes in the proximity.  We have considered the lightest level to be sufficient 
as a design basis.         

.  .  .” 
 
The studies for the impact of a heavy military aircraft and commercial airliners, although cited 12 for the 
Sizewell B assessment were not then and remain unavailable to the public domain.  However, it is 
interesting to note that the title dealing with the military aircraft15 scenario refers to  

‘The Effects of Impact Heavy Military Aircraft Adjacent to but Not Directly on the Vulnerable Buildings’  

                   with the emphasis suggesting that somehow the pilot of this 
hypothetical aircraft was able to retain some degree of control (and also possess the knowledge of the 
critical parts of the plant) to avoid the most vulnerable parts of the plant.  It is on the basis that the heavy 
military aircraft would not impact directly, that the Sizewell B operator claims that the likelihood of an 
unacceptably severe fire or explosion following the impact is sufficiently low to be discounted.  In other 
words, the nuclear industry considers there to be little justification in installing additional features (ie 
beefing up) to provide aircraft crash resistance.16 

The Probability of Terrorist Attack 

Of course the probability or chance of the occurrence of a malicious human act, such as the terrorist 
attack of 11th September, cannot be determined by classical a priori probabilistic means.  Thus, it is only 
realistic to apply chance to the success of the attack once it has been initiated.  Put another way, applied 
to the terrorist attack of 11th September the Phit or success rate was 3 out of 4 airborne aircraft, (Phit = 
0.75).17  If the aircraft that crashed in Pennsylvania is discounted, the Phit for those aircraft on their target 
run was 3 out of 3 or 100%.  In other words, the hijackers had obtained sufficient flying skills to ensure 
that, once that the aircraft has been commandeered, the mission would have a high, almost certain rate of 
achieving its objective.  Whereas the military or civil pilot would not be expected to have been trained to 
identify the vulnerable parts of a nuclear plant (even though it is assumed that the pilot will strive to avoid 
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certain parts of the plant), it would be in the hijacker’s interest to identify the most vulnerable parts of the 
selected target.  Hence, the same NUREG-0800 mitigation applies, but in this case in reverse with the 
terrorist intent of striking the plant with, perhaps, a Phit of 95% of success once committed to the final 
run to the target.18 

Defence in Depth – No Fly Zones and other Countermeasures 

The imposition of notional restraints such as no-fly zones nearby nuclear plants are to no effect once that 
an aircraft has been commandeered and the terrorist attack is underway.  If the attacking terrorists fly to 
the targeted plant by line of sight (apparently the case for the World Trade Center), then visual contact at 
cruising altitude is achieved at about 30 plus miles which leaves but an impracticably short time scale (4 to 
5 minutes) for the authorities to detect, intercept, interrogate and implement the appropriate remedial 
action to thwart the attack. 

The case of the French La Hague reprocessing plant further illustrates the problem. COGEMA stated 
that for a potential air crash on La Hague:  
 
“. . . 
 The defense against such a hypothesis is the responsibility of the National Defense. The Air Force, on alert, 

is ready to take off within two minutes and intervene immediately 
. . .”19  

 
        adding a day later that: 
 
 “. . . 
 given its geographical location, the National Defense would have time to act should it suspect an 

infringement to this rule 
. . .”   

 
The delay envisaged does not seem to include the time necessary for fighter planes to reach the area. 

 

A general plane flying at 100m/s covers a distance of 8 km in 1 min and 20 seconds. It would take 
half this time or 40 seconds for a commercial airliner, flying at 200 m/s, to cover this distance. The 
average time the planes take to cover this distance is, in both cases, within the two minutes 
necessary for the Air force planes to intervene. It is however correct that an airliner (flying generally 
at 200 m/s) and taking the air corridor 30 km south of the facilities, would be within the 
intervention time put forward by COGEMA.20 It would take the airliner 2 minutes 30 seconds to 
reach the reprocessing facilities. However, the safety margin would be virtually zero and it seems 
highly unlikely that the identification and interception of a kamikaze plane by fighter planes is a 
practical defense strategy.  Furthermore,  COGEMA stated, even after 11 September, that “flying 
over the factory is forbidden at any time “ although it omits to add that the prohibition, according to its 
own public inquiry documents, was limited only to “low altitude flying: 300 m for single-engine aircraft 
and 1,000 m for jet-engine aircraft”. 
 
Following the 19-20 October 2001 announcement of the positioning of ground-to-air missiles near 
COGEMA La Hague, an operation that started on 26 October 2001, a regulatory text was issued to 
reinforce the military measures by broadening the no-fly zone over the site. The 23 October 2001 edict 
issued by the Ministry of Defence states the creation of "a temporary no flying zone in the La Hague area” and 
which was subsequently set for an undetermined period in the future.  Hence, the temporary no-fly zone 
is now extended to a radius that can reach 10 km and altitude of 1,524 m (5000 feet), instead of 300 m for 
single-engine aircraft and 1000 m for multi-engine aircraft.21  Any airliner or other aircraft type infringing 
this new no-fly zone is ordered by radio to "land on the nearest airport outside this zone ". A refusal to obey 
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would put on alert fighter aircraft at the military air forces, who would attempt to re-contact the airliner 
once they intercept it. In the case the airliner continues to ignore the indications of the fighters, the latter 
will fire a warning shot. Finally, should the plane present an apparent “threat ", the intercepting fighter 
would take more radical measures.22 
 

Forecasting the Possible Outcome & Consequences of a Terrorist Attack 

Because an accidental crash of a civil airliner on some part of a nuclear site would be reckoned, on the 
basis of the established assessment routines,8 to be a very remote event it is likely to be considered 
beyond the design basis.  However, in the UK, Principle 28 of the NII SAPs2  requires fault sequences 
beyond the design basis that have the potential to lead to a severe accident to be considered and analysed 
(by bounding cases23 if appropriate) and there may be specific requirements for protection of the plant 
against sabotage which are not published.24   

In other words, if it is acknowledged that an accidental aircraft crash could lead to a very severe 
radioactive release then, however remote the probability of this event, there is a requirement that the 
consequences be identified and assessed.  Put another way, this is a consequence analysis approach that 
disregards any offset from the probabilistic value of a foreseeable event happening.  If the aircraft crash is 
an act of sabotage then the probability must be assumed at unity (Phit = 1) and the event considered only 
in terms of its consequence mitigation. 

Application to a Nuclear Power Station Site 

The UK NII SAPs Principle 28 particularly applies to the containment of the plant, it being a requirement 
to “identify the failures which could occur to the physical barriers to the release of radioactive material”, although it is not 
clear whether Principle 28 has been applied to all of the systems and processes within a nuclear power 
station or, indeed, to all types and ages of nuclear power stations.  Also, if Principle 28 has been applied, it 
is not clear whether i) the general premise that the plant containment would survive the impact and fuel 
burn or, and as for the Sizewell B nuclear safety case, ii) that the chance of an accidental air crash is 
considered so remote as to be entirely incredible.  

The uncertainty here is that if it is acknowledged that a terrorist attack by aircraft crash is now, a posteriori 
(that is an established external hazard) are the plant operators now required to review and amend the 
nuclear safety case in account of this? 

Returning to Finland and its preparation to select the type of reactor plant for its fifth reactor, there the 
safety regulator seems to have conducted preliminary reviews of plant types, setting these again ‘new safety 
requirements’ noting that:25 

“. . . 
STUK has not made facility-specific assessments of how the facility concepts presented in the application meet the 
new safety requirements. According to STUK the structural designs of all the plant concepts would require some 
modification.   However, none of the proposed power plant types would need to be rejected based on current 
knowledge. 

                                                                                             .  .  .” 
 

Consequence Mitigation 

First, it follows that the design and construction of the buildings of these sites were likely to comply with 
the regulations and good practice of the times, being considered then ‘fit for purpose’. 26  So, even if the 
designers of the day had then included within the building and containment designs (and processes 
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within) features resistance to aircraft crash, the assessment would have related to the types of aircraft 
flying at that time.  Similarly, the need or priority to incorporate such features would have sensibly related 
to the density of aircraft traffic at that time, that is the probability of a crash event.   Second, for those 
plants designed and regulated from a probabilistic basis, it is very doubtful indeed that any intentional 
aircraft crash resistance was built into the system, that is not just for the building structures and physical 
containments, but also on the resistance of safety equipment to resist impulse loading and the fire 
associated with aircraft crash. 

Put another way, most of Britain’s and the rump of France’s nuclear plants were designed and set down 
in the 1950s, 60s and 70s when commercial aircraft were typical of the relatively small size of a Vickers 
Viscount and similar.  Today, there are no Viscounts in commercial service yet all of the nuclear plants of 
those bygone times remain, most continuing in operation. 

These two inconsistencies alone suggest that it would be impracticable for the world’s nuclear plant 
operators to modify much of the existing plant so that it would be reasonably guaranteed to survive an 
aircraft crash.  The severity of an aircraft crash might drive through and render ineffective the normally 
accepted physical systems that serve to limit the consequences, such as safe shutdown, continued 
availability of utilities, adequate containment integrity and on- and off-site emergency preparedness.  If so, 
the accident would still have to be ‘managed’ by improvising the use of other surviving systems and 
resources, which requires an increased reliance upon operator intervention because accident management 
strategies must be implemented by plant personnel.   

One area of doubt here is that nuclear plants are designed to withstand, as far as is practicable, specified 
external hazards such as earthquakes, flooding, etc., but, this being so, this defence is quite scenario-
specific and the capability of certain items of equipment to survive depends not only on the custom 
engineered resistance to particular scenarios but, importantly, on the diversity of function of the safety 
systems and equipment involved.  The point here is whether the diversity of the installed equipment is 
sufficiently broad to resist a common mode failure across all of the equipment and systems that could be 
triggered by aircraft impact, fuel explosion27 and the subsequent fire. 

Also, it is doubtful that the outcome of a consequence analysis could be practicably implemented to provide 
an effective consequence mitigation management regime.  Moreover, accident management, even if 
performed as planned, might prove ineffective leading from one severe accident sequence to another just 
as hazardous and it may, in certain rapidly developing situations, be counter-productive. 

The Impact and Ensuing Fire of an Aircraft Crash 

Aircraft, for all of their speed and power, are relatively fragile structures.  The 190 or so tonnes of each 
Boeing 767 that crashed into the South and North the towers of the World Trade Center may have 
provided a colossal kinetic energy but the wings and fuselage would have shredded almost immediately, 
leaving just the compact masses of the engines and a few solid spars and undercarriage frames in the role 
of very energetic projectiles to penetrate the building structure.  Accompanying this high-energy impact 
was the release of the 80,000 litres or so of aviation fuel, partially vaporised that erupted into fireballs to 
ignite flammable materials in the vicinity.28  Vaporised and unburnt fuel would have been squeezed into 
building voids by the expanding flame and pressure fronts and the remaining fuel would have gushed 
into the internals of building, spreading downwards through buckled and holed floors.  As the tragedy 
unfurled it was clear within minutes that about ten floors of each of the towers of the World Trade 
Center were burning furiously, so intensely that the structures buckled and progressive collapse 
commenced on the South Tower within one hour of the aircraft impact. 

Now that a full analysis of the collapse of both the World Trade Center towers and the Pentagon has 
been published,29 it is clear that both impact and fire phases of the crash played active roles in the 
destruction of the buildings.  The initial impact would have destroyed or weakened the structure of the 
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buildings and the immediately following fire was of sufficient temperature to ignite all flammable 
materials within, which provoked further structural member buckling and damage leading to a 
progressive and catastrophic structural failure. 

Application of an Aircraft Crash to the Engineered Structures of Nuclear Power Plants 

Obviously, the effect and outcome of an aircraft crash and fuel explosion/burning on any one of the 
active plant building or processing/storage area would be subject to how each of the individual target 
buildings would perform under the impact and fire conditions. 

As a result of impact (kinetic) energy is transferred from the aircraft to the building.30  The energy 
transferred is absorbed by the building components in the form of strain energy whilst each component 
is deforming elastically and beyond up to the point of permanent yielding.  The impact can be segregated 
into two regimes:  First, at the moment of impact the aircraft can be considered to be a very large but 
relatively ‘soft’ projectile which, by self-deformation’ will dissipate some fraction of the total kinetic 
energy being transferred during the impact event.  Second, some components of the aircraft will be 
sufficiently tough to form rigid projectiles that will strike and commence to penetrate, again by kinetic 
energy, components of the building fabric and structure. 

The first of these damage regimes involves quasi-impulsive loading, so the response of the structure is 
obtained by equating the work done by the impacting load to the strain energy produced in the 
structures.  Setting aside localised damage in which individual structural components are removed 
(blasted away), the most probable failure mode of the structure overall is that of buckling and collapse in 
response to the impact.  The types of building structure featured at nuclear power plants, for example the 
radioactive waste and spent fuel buildings, would not withstand the impulse magnitude delivered by a 
crashing commercial aircraft.31 

For impact damage the aircraft, more particularly parts and components of it, have to be considered as 
inert projectiles.   The energy transfer upon impact relates to the kinetic energy (KE) and the key 
parameter in determining the target (building component) response is the kinetic energy density which 
relates the KE and the projected area of the projectile. In terms of projectile velocity, a diving civilian 
aircraft is unlikely to exceed 500 knots so the damage mechanism falls below the so-called hydrodynamic 
regime where the intensity of the projectile-target interaction is so high that a fluid-to-fluid damage 
mechanism prevails (as utilised by tungsten tipped and depleted uranium scarab or long rod penetrator 
armour piercing rounds).32  In the sub-hydrodynamic regime more conventional strength of materials 
characteristics (ie strength, stiffness, hardness and toughness) will determine the penetration mechanism. 

For uniform, elastic materials, such as low carbon steel used in steel-frame construction such as diesel 
generator sheds, radioactive waste stores and, sometimes, irradiated fuel storage buildings, a good first 
estimate of the penetrating power of a projectile can be obtained from the Recht equation which, for 
certain hard components of the aircraft engines, could be as high as 200mm.33  For a steel framed 
industrial building structure, typical web and flange thicknesses of the steel section girders and beams is 
typically about 20 to 40mm so, even with penetrator break up, this and other projectiles would be more 
than sufficient to structurally damage, if not catastrophically collapse the building steel frame. 

The failure of reinforced concrete (rc) to ballistic loading applies to the different ways in which this 
common building structural material is used:  For very thick walled structures the concrete is considered 
to be a semi-infinite mass, for concrete walling and flooring (and roof) slabs the account has to be taken 
of the flexure of the slab, and to prevent scabbing (where the back face of the concrete surface detaches) 
the reflective characteristics have to be modelled.  The first two of these applications are important in 
respect to the whole structure remaining intact, and the last that in even where complete penetration is 
not achieved, the detached scab can form a missile in itself damaging and/or disabling safety critical plant 
within the concrete containment. The derivation of the ballistic loading of ferro-concrete (steel reinforced 
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concrete) structures is a little more empirically derived,34  although even with broad brush assumptions 
about the detailed design of the ferro-concrete structures the hardened projectile striking most of the 
concrete structures of a nuclear power plant would achieve full penetration.  For example, a glancing 
impact on a typical rc framed building would be sufficient to possibly penetrate the rc roof slabs which 
are not practicably greater than 400mm thickness, (because of selfweight loading considerations over the 
4m spans). 

The point here is that the building structures of a nuclear plant require to maintain complete containment 
during an aircraft crash because even relatively small penetrations will permit the inflow of aviation fuel 
with the almost certain fire aftermath which would, in itself heighten the release and dispersal of any 
radioactive materials held within the building structure. 

For the purposes of this paper, it is quite reasonable to assume that the building containment would be 
breached – this is likely to be a justified assumption because of the absence of any extraordinary civil 
engineering features visibly incorporated into the building design.  On this assumption, once that the 
building is breached it may be that the particular process and/or substances stored within will add to the 
damage, by explosion, and ferocity of the fire (flammables).  

 
In an official statement from November 2002,35 the US-NRC admits: 
 

• The NRC recognizes that nuclear power plants, including the SFP [Spent Fuel Pools], 
were not specifically designed to withstand the impact of a large commercial airplane fully 
loaded with fuel 

• The Commission views that the nation’s efforts associated with protecting against terrorist 
attacks by air should be directed toward enhancing security at airports and on airplanes 

• The NRC has been in regular communication with other Federal agencies, specifically the 
FAA [Federal Aviation Administration] and DOD [Department of Defense], which have 
acted more than once to protect airspace above nuclear power plants 

 

Some Postulated Incident Scenarios 

For a typical nuclear power plant, the following outline scenarios might arise: - 

Irradiated Fuel Storage:   Of the covered fuel ponds, if the roof structure was penetrated and the pond 
wall structure breached, then loss of pond water and aviation fuel fire could lead to a breakdown of the 
fuel cladding and fuel itself, resulting in a high release fraction of fission products, possibly mixed with 
emulsions of the aviation fuel.  The fuel pond radioactive inventory depends on the degree of irradiation 
of the fuel (the burn-up) and the post in-core period, although the quantity of fuel might represent (in 
mass) 7 to 8 times, or more, the reactor core load. 

Zircalloy clad oxide fuels provide opportunity for an exothermic and self-sustaining zirconium/steam (or 
air) reaction at elevated temperatures that will result in, obviously, failure of the fuel cladding and 
increased oxidation of the exposed fuel pellet surfaces, with the hydrogen liberated from the oxygen 
stripping and exothermic chemical reaction Zn+H2O providing a hydrogen explosive atmosphere, with 
the accompanying radioactive release of spent fuel fission products potentially very significant.36  For the 
UK Magnox nuclear power stations, and for certain research reactors, the magnesium alloy cladding and 
the base elemental metal fuel are pyrophoric in air which could result in a very efficient release of the 
reactor core or spent fuel pond inventory. 

A crashing airliner, displacement of the fuel pond water and introduction of burning aviation fuel could 
result in a very significant radioactive release from the irradiated fuel pond.  The subsequent dispersion 
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range of the airborne carried radioactivity could be much enhanced by the high thermal energy involved 
(plume height) and combination of fission products with emulsions of the aviation fuel and its products 
of combustion. In fact, the impact assessment of a plane crash on a spent fuel pool was evaluated by the 
US-NRC in a study dated October 2000.37 The study reveals, with hypotheses qualified by the authors 
themselves as conservative, that if the temperature of the irradiated assemblies for light-water reactors 
reached around 900°C, the zirconium fire, then self-sustaining by various chemical reactions, would cause 
the release of 50-100% of the inventory of volatile materials present. 

Intermediate Radioactive Wastes:  The radioactive inventories and chemical make-up of the stored 
radioactive wastes at nuclear plants sites is known and because of the dilemma over failure to find a 
national radioactive waste repository for high and intermediate level categories of radioactive waste such 
wastes will accumulate at the individual nuclear sites for the immediate and interim futures.   

Certain nuclear sites carry a high burden of radioactive wastes. At Sellafield, for example, there are very 
large volumes in store, some of which are flammable in themselves, such as the 1,000m3 or more of 
contaminated reprocessing solvent (odourless kerosene) which could add considerably to the aftermath 
fires of an aircraft impact. 

Operational Nuclear Reactors:  The range of potential outcomes for operational reactors subject to 
terrorist attack is large.   

Obviously, a direct impact on the reactor locality, breaching the reactor pressure vessel and/or the 
primary coolant circuit would most probably result in a radioactive release into and through the 
secondary containment systems that would have also been breached by the impacting airframe.  Other 
safety-critical equipment of operational nuclear power plants include the electricity supply grid 
connections and the emergency diesel electricity generators, both of which provide essential electrical 
suppliers for safety systems, reactor cooling and heat sinks, loss of  which, particularly effective core 
cooling, could result  in  containment challenging events developing in the reactor core. 

Irradiated Fuels and Unirradiated MOX in Transit:  Although significantly smaller total radioactive 
source terms available for release, fuels in transit represent relatively unprotected targets for the terrorist.  
This is because it is just not practicable to cover the entirety of the transit routes which, in France for 
example, represent an average of about 1,000 km per shipment for a total of over 450 transports of 
plutonium and plutonium bearing fuels. And, importantly, the transit takes the fuel through and close by 
centres of dense population.  In the UK, where the irradiated fuel is transported by rail, consignments of 
fuel are regularly shipped through densely populated towns and cities, including central London. 

Potential scenarios for fuels in transit are not dissimilar to those for irradiated fuel in storage but, while 
the shipping casks provide a better protection than the storage pools, that the site of the incident and 
radioactive release could be in the centre of a densely populated urban area, hence increasing the number 
of potential casualties very significantly indeed. 

The main conclusions that can be drawn from these scenarios are that: 

a) None of the UK’s nuclear reactors has a containment which has been specifically designed to resist 
aircraft attack other than at Sizewell B, like at the French reactors, where the secondary 
containment dome is designed to resist an accidental impact of a light aircraft. In Germany and the 
United States, more recent containment buildings have been designed to withstand the impact of a 
military fighter jet. However, none have been specifically designed to withstand the impact of large 
aircraft fully loaded with fuel. 
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b)  None of the radioactive waste and spent fuel facilities, at the nuclear power plants, at BNFL 
Sellafield and COGEMA La Hague, could withstand the directed impact of a fully loaded 
commercial airliner; and 

c)  many of the radioactive waste and fuel storage facilities, again at the nuclear power plants and at 
Sellafield and La Hague contain massive amounts of radioactive material available for suspension 
and dispersal in the aftermath of a terrorist attack.38 

 Conclusions 

This paper set itself three objectives. These were  

1)  is there sufficiently detailed information available in the public domain for a terrorist 
group to plan an attack with sufficient confidence of success;  

2)  does the regulatory safety case requirement include for accidental aircraft crash and, if it 
does, is this sufficient to safeguard against intentional aircraft crash; and  

3) could the plant’s systems and processes be modified and prepared to withstand such an 
intentional attack and, if so, how much of this defence would depend upon accepting 
intentional aircraft crash as inevitable, thereby relying almost totally upon consequence 
management to mitigate the outcome. 

 

As the Chairman of the US-NRC puts it in a recent, quite resigned, statement:39 
 

“. . . 
 I think that there is a widespread consensus that, for the time being at least, the danger of terrorism is a fact of 
life, and that the way to deal with it is by combating the terrorists and preventing them from striking, rather 
than by engaging in a futile effort to identify and eliminate every possible target. 

. . .” 
 

Information Accessibility: Using the United States, the United Kingdom and France’s nuclear 
plants as yardsticks, it is relatively straightforward to obtain all of the information required by 
simply accessing publicly available documents. Ministries, agencies of central government and the 
operators themselves publish most of these sources of quite detailed information, and local 
authorities maintain records of planning applications that include details of extant as well as 
proposed plants and buildings. These records and documents are readily accessible, it being 
possible to obtain copies directly from the originating department of documents that date back to 
1996 and earlier.   

Also, there are a number of ‘storehouses’ of related information.  Local and national, and 
international environmental (and other) groups hold pools of information that they have 
accumulated over the years.  As example, one local group was able to provide photographs of 
locations deep within the BNFL Sellafield fuel reprocessing site, fully detailed engineered drawings 
of buildings, and scaled site maps that included the location of essential services, are available for 
the Sizewell B PWR reactor from the Construction Report prepared for and published at the 
Public Inquiry. 

Aircraft Crash and Design Basis Threats: Although this paper centres on an intentional aircraft 
crash, a future terrorist attack against a nuclear plant might be in the form of some other external, 
man-made hazard. However, here we have only considered aircraft crash in any detail, although a 
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future terrorist incident might involve, for example, a truck bomb driven close to or actually into 
the plant secure area.  

The requirement that aircraft crash, irrespective of the forecast accident frequency, be accounted 
for in the regulatory safety case was not introduced in the UK until 1979 (1980 in France) for 
nuclear reactors and 1983 (1992 in France) for chemical separation and nuclear fuel plants such as 
those at Sellafield and la Hague - examples of where the nuclear industry have taken this into 
account, such as for the Sizewell B PWR, are almost dismissive of the risk solely on the basis that 
the calculated frequency renders such an accidental event to be entirely incredible and, hence, there 
may have been little incentive to include for such a remote event in the design.   

For other Design Basis Threats (DBTs) the US Nuclear Regulatory Commission requires nuclear 
plant operators to submit to force-on-force trials simulating intentional malicious actions.  Since 1991 
the NRC has conducted 91 trials or Operational Safeguards Response Evaluation tests, of which about 
45% of the tested nuclear plants failed.  Most disturbing is that three plants tested shortly before 
11th September, Farley, Oyster Creek and Vermont Yankee, were the worst on record.  In another 
assessment, the NRC notes that between 15 to 20% of US nuclear plants would sustain safety 
critical levels of damage from vehicle bombs accessing close to the supervised boundary of the 
plant.40 

Like many other nuclear countries, the states of Europe have been jarred into action by the events 
of 11th September.  New committees have been formed, assessments are being made and there is 
now, in the UK via REPPIR, a real opportunity to put in place, resources permitting, more 
effective emergency planning and consequence management measures.41   

However, it has to be acknowledged that modifying the existing plants to improve their physical 
invulnerability is just not practicably feasible.  In place of this, there must be effective intelligence 
gathering on the ground in advance of any planned attack and this must be communicated to the 
operators and the emergency planners.   

But, that said, now we are beginning to learn that although informed in advance of the threat, the 
Bush administration was unable the thwart the 11th September attacks.  A similar failure in acting 
upon gathered intelligence could not be tolerated again, particularly if it was believed that a nuclear 
plant had been identified as a target. 

Defending Nuclear Plants - Consequence Management:  Nuclear plants are almost totally ill-
prepared for a terrorist attack from the air.  The design and construction of the buildings date from 
a period of over 50 years, many of the older buildings would just not withstand an aircraft crash 
and subsequent aviation fuel fire, some buildings, now redundant for the original purpose, have 
been crudely adapted for storage of large quantities of radioactive materials for which they are 
clearly unsuited, and the design of the most modern plants on the site does not seem to provide 
that much defence (in terms of containment surety, dispersion of stocks to different localities, and 
segregation of hazardous materials) against an aerial attack. 

It would not seem to be practicable for each and every building and process at such nuclear plants 
to be modified to provide adequate protection against aircraft crash. The investment requirement 
would be enormous and the practical difficulties challenging indeed – many of the processes would 
have to be relocated, possibly to underground caverns and bunkers, which in itself might introduce 
other safety related detriments. 

If a terrorist group planned to intentionally crash an aircraft onto a nuclear power station then the 
probability of the event becomes unity and it is inappropriate to mitigate the chance of such an 
intentional attack occurring by probabilistic based assessment.  Considering an intentional, terrorist 
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driven aircraft crash as a certainty, rather than as some remote probability, requires the event to be 
assessed in terms of its consequence management alone and this consequence management is the 
only form of mitigation available.   In other words, there are no practicable measures that might be 
implemented on site to provide a defence in depth to avert such an event.  

However, the idea that a severely damaging event, arriving like a bolt out of the blue, could be 
‘managed’ by improvising the use of other systems and resources is doubted, particularly because ad 
hoc decisions and actions (taken in unpracticed and highly stressed situations) might lead from one 
severe condition situation to another just as hazardous.42 
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